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Jet Jet 
Measurements Measurements 

(continued)(continued)
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Using jets as a probe of quark structureUsing jets as a probe of quark structure

• If quarks contain smaller constituents 

– constituent interactions have a scale Λ

– at momentum transfers << Λ, quarks 
appear pointlike and QCD is valid

– as we approach scale Λ, interactions can 
be approximated by a four-fermion 
contact term:

– at and above Λ, constituents interact 
directly

Proton
Quark

Preons?

q q

q q

σ ~ [ QCD + Interference 
+ Compositeness ]

Modifies dijet mass and centre 
of mass scattering angle distribution

Mjj cos∗θ

2
ˆ
Λs

s
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DØ DØ dijetdijet angular distributionangular distribution

95% CL Compositeness 
Limit:

Λ(+,−) ≥ 2.1 - 2.4 TeV

Mass > 635 GeV/c2

Pure 
Rutherford 
scattering

NLO QCD
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DØ and CDF DØ and CDF dijetdijet mass spectrummass spectrum
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Jet cross sections at Jet cross sections at √√s = 630 GeVs = 630 GeV

Ratio allows a substantial 
reduction in both theoretical 
and experimental systematic 
errors
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Jet cross section ratio Jet cross section ratio 630/1800 GeV630/1800 GeV

• DØ and CDF both measure the ratio of scale invariant cross sections 
ET

3/2π d2σ/dETdη vs. xT=ET/√s/2   (≡ 1 in pure parton model)

Not obviously consistent with 
each other (at low xT) . . . or with NLO QCD (at any xT)
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Suggested explanationsSuggested explanations

• Different renormalization scales at 
the two energies
– OK, so it’s allowed, but . . .

• Mangano proposes an O(3 GeV)
non-perturbative shift in jet energy
– losses out of cone?
– underlying event?
– intrinsic kT?
– could be under or overcorrecting the

data (or even different between the
experiments — DØ?)
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Jet production at HERAJet production at HERA

H1, inclusive jets

ZEUS, 2 jets

ZEUS, inclusive jets
η distribution

H1, 2 jets

H1, 3 jets

• Inclusive jets, 2-jet and 3-jet cross sections at HERA - good 
agreement with QCD
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Jet production at HERAJet production at HERA

Photoproduction

Deep Inelastic
Scattering

(electron goes down the beampipe)
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The photon structure functionThe photon structure function

γ γγ

Lowest-order process Higher-order process Photon structure function

Many of the higher order contributions to processes with incoming photons 
can be estimated by treating the photon as if it had hadronic structure.  

This is called the photon structure function.  It is really a resummation.

Useful because it is approximately independent of the rest of the process 
(just like the proton PDF) at least within a limited kinematic region (Q2

small).

It is also the only PDF that is perturbatively calculable.

γ* γ* γ*
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Jet cross sections: final remarksJet cross sections: final remarks

• Jet measurements have started to become precision measurements
– More data will settle the high-ET issue CDF/DØ (if there is one)

• … but this level of precision demands considerable care from the
experimentalist, in understanding —
– jet algorithms
– jet calibrations
– all the experimental errors and their correlations
– the level of uncertainty in PDF’s

Next topics:
• jet characteristics and colour coherence
• QCD in the production of photons, W and Z, and heavy flavour
• measurements of αs

• hard diffraction
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JetJet
CharacteristicsCharacteristics
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Jet radial shapeJet radial shape
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ee++ee–– andandpppp
OPAL and CDF, cone jets R=1.0

• Jets are broader inpp than e+e–

– underlying event?  
• Corrected for, and should not be this large an effect

– more gluons, fewer quarks?
• simulation → OPAL jets are ~ 96% quark jets, CDF jets are 

~75% gluon-induced

<ET> ~ 40-45 GeV
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DØ jet shape measurementsDØ jet shape measurements

• Find forward jets are narrower than central jets: quark enriched?

• Also interesting that the JETRAD NLO calculation does pretty well at 
predicting the average shape, given that at most one gluon 
contributes

Central Forward
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Quark jets and gluon jetsQuark jets and gluon jets

• Probability to radiate proportional to color factors:

• We might then naively expect

• In fact higher order corrections and energy conservation reduce this:  

r = 1.5 to 2.0

g
g

g

~ CF = 4/3

~ CA= 3

q q
g 2
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q and g jets at LEPq and g jets at LEP

• Select identifiable samples by topology and b-tagging
– e.g. OPAL inclusive q and g samples, LEP1

Treat hemisphere as a 
gluon jet 

E ~ 40 GeV, purity ~ 82%

~ 400 events

Two b-tagged 
jets

Plane ⊥ thrust axis

>700

Treat hemisphere as a 
u,d,s jet 

E = 45.6 GeV, purity ~ 86%

~ 200,000 events

Two anti-
b-tagged 
jets
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OPAL resultsOPAL results

±
=

dy
dn

N
1r

)quarks(r
)gluons(r

R = 1.92 for|y|< 1
cf. CA/CF



Boaz Klima (Fermilab) 9th Vietnam School of Physics 20

Separating q and g jetsSeparating q and g jets

• Contributions of different initial states to the cross section for fixed jet 
ET vary with √ s 

– simulation:  gluon fraction = 33% at 630 GeV, 59% at 1800 GeV

• Unravel jets until all subjets are separated by y = 0.001

• Compare jets of same (ET,η) produced at different √ s 

– assume relative q/g content is as given by MC and quark/gluon jet 
multiplicities do not depend on √ s 

Jet ET Jet ET

σ
1800GeV

100 200     300

σ
630GeV

gg

qg

qq

100     200    300

s
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Quark and Gluon Jet StructureQuark and Gluon Jet Structure
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Gluon Jets
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jetsjets dN
dM

N
1 kT algorithm

D=0.5, ycut= 10-3

55 < ET(jet) < 100 GeV
|ηjet| < 0.5

DØ Preliminary
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Dominant uncertainties come from g jet fraction and jet ET scale

• measure M630 = fg
630   Mg + (1 – fg

630) Mq

M1800 = fg
1800 Mg + (1 – fg

1800) Mq

• Have we glimpsed the holy grail (quark/gluon jet separation)?
– The real test will be to use subjet multiplicity in (for example) the top → all 

jets analysis, but unfortunately this will probably have to wait for Run II 
(DØ has done a little in its Run I publication)
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Jet structure at HERAJet structure at HERA

• ZEUS: subjet multiplicity rises as jets become more forward
• Consistent with expectations (more gluons) and HERWIG
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WeakWeak
BosonsBosons
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W samplesW samples
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W and Z production at hadron W and Z production at hadron colliderscolliders

p q 

q 
p

W(Z)

l

ν (l)

O(αs
0) Production dominated byqq

annihilation 
(~60% valence-sea, ~20% sea-sea)

Due to very large pp → jj production, 
need to use leptonic decays 

BR ~ 11% (W), ~3% (Z) per mode

W

g

q

q’

O(αs) Higher order QCD corrections:

• Boson produced with mean pT ~ 10 GeV 
• Boson + jet events (W+jet ~ 7%, ET

jet > 25 GeV )
• Inclusive cross sections larger 
• Boson decay angular distribution modified

• Distinctive event signatures
• Low backgrounds
• Large Q2 (Q2 ~ Mass2 ~ 6500 GeV2)
• Well understood Electroweak Vertex

Benefits of studying QCD with W&Z Bosons:
q

q’

W

g
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Cross section measurementsCross section measurements

• Test O(α2) QCD predictions for 
W/Z production
– σ(pp → W + X) B(W → lν)
– σ(pp → Z + X) B(Z → ll)

• QCD in excellent agreement 
with data
– so much so that it has 

been seriously suggested 
to use σW as the absolute 
luminosity normalization 
in future
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sections by 1.062 to compare with DØ)
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W and Z W and Z ppTT

• Large pT (> 30 GeV)
– use pQCD, O(αs

2) calculations exist

• Small pT (< 10 GeV)
– resum large logarithms of MW

2/pT
2

• Match the two regions and include non-perturbative parameters 
extracted from data to describe pT ~ ΛQCD



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Arnold and Kauffman Nucl. Phys. 
B349, 381 (91). O(αs

2), b-space, 
MRSA’ (after detector simulation)

Preliminary

χ2/dof=7/19 (pT
W<120 GeV/c)

χ2 /dof=10/21 (pT
W<200GeV/c)

• Resolution effects dominate at low pT 
• High pT dominated by statistics and backgrounds

Preliminary
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DØ DØ ppTT
ZZ measurementmeasurement

• New DØ results hep-ex/9907009

Data

Data–Theory/Theory
Fixed Order 

NLO QCD 

Data–Theory/Theory
Resummed

Ladinsky & Yuan 
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CDF CDF ppTT
WW and and ppTT

ZZ

�Data�Theory�

Theory

CDF preliminary Run � Data
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Ellis, Ross, Veseli, NP B503, 309 (97). O(αs), 
qT space, after detector simulation.

ResBos: Balasz, Yuan, PRD 56, 5558 (1997), O(αs
2), 

b-space 
VBP: Ellis, Veseli, NP B511,649 (1998), O(αs), qT-
space 
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W + jet productionW + jet production

• A test of higher order corrections:

• Calculations from DYRAD (Giele, Glover, Kosower)

R R< ∆
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W + jet measurementsW + jet measurements

• DØ used to show a W+1jet/W+0jet ratio badly in disagreement with
QCD.  This is no longer shown (the data were basically correct, but 
there was a bug in the DØ version of the DYRAD theory program).

• CDF measurement of W+jets cross section agrees well with QCD: 
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CDF W/Z + n jetsCDF W/Z + n jets

• Data vs. tree-level predictions for various scale choices
• These processes are of interest as the background to Top, Higgs, etc.
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DrellDrell--Yan Yan processprocess

• Measure dσ/dM forpp → l+l- + X
• Because leptons can be measured well, and the process is well 

understood, this is a sensitive test for new physics (Z’, compositeness)

O(αs
0)

g

q

q’

O(αs)
q

q g

l+
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γ*/Z

l+
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γ*/Zq

q
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DrellDrell--YanYan data from CDF and DØdata from CDF and DØ

• Compositeness limits:  3 – 6 TeV
Assuming quarks & leptons share common constituents
(Limits depend on assumed form of coupling)
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PhotonsPhotons
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Motivation for photon measurementsMotivation for photon measurements

• For the last 20 years or so, direct photon measurements have been 
claimed to:
– Avoid all the systematics associated with jet identification and 

measurement
• photons are simple, well measured EM objects
• emerge directly from the hard scattering without 

fragmentation
– Hoped-for sensitivity to the gluon content of the nucleon

• “QCD Compton process”

• In fact, as we shall see, these promises remain largely unfulfilled, but 
we have still learned a lot along the way

γ
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Photon identificationPhoton identification

• Essentially every jet contains one or more π0 mesons which decay to 
photons
– therefore the truly inclusive photon cross section would be huge
– we are really interested in direct (prompt) photons (from the hard 

scattering)
– but what we usually have to settle for is isolated photons (a 

reasonable approximation)
• isolation: require less than e.g. 2 GeV within e.g. ∆R = 0.4 

cone

• This rejects most of the jet background, but leaves those (very rare) 
cases where a single π0 or η meson carries most of the jet’s energy

• This happens perhaps 10–3 of the time, but since the jet cross section 
is 103 times larger than the isolated photon cross section, we are still 
left with a signal to background of order 1:1.
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Photon candidate event in DØPhoton candidate event in DØ

Photon

Recoil Jet
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• Photon candidates: isolated electromagnetic showers in the 
calorimeter, with no charged tracks pointed at them
– what fraction of these are true photons?

• Signal

• Background

Signal and BackgroundSignal and Background

Experimental techniques

• DØ measures longitudinal  
shower development at start
of shower

• CDF measures transverse profile 
at start of shower (preshower
detector) and at shower   
maximum

γ

γ

γ
π0

Preshower
detector

Shower maximum
detector



Boaz Klima (Fermilab) 9th Vietnam School of Physics 41

10
-2

10
-1

1

10

10 2

10 3

10 4

10 5

0 20 40 60 80 100 120 140
Eγ

T (GeV)

d
2 σ/

dE
T
dη

 (
pb

/G
eV

)

NLO QCD, CTEQ4M, µ = ET
max

1.6 < | η | < 2.5

 |  η  | < 0.9

Photon cross sections at the TevatronPhoton cross sections at the Tevatron

• DØ PRL 84 (2000) 2786 • CDF PRD 65 (2002) 112003

QCD prediction is NLO Owens et al.
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What’s happeningWhat’s happening at low Eat low ETT??

• Gaussian smearing of the transverse momenta by a few GeV can 
model the rise of cross section at low ET (hep-ph/9808467)

“kT” from soft gluon emission

kT = 3.5 GeV

γ

PYTHIA

3.5 GeV
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Fixed target photon productionFixed target photon production

• Even larger deviations from QCD observed in fixed target (E706)

• again, Gaussian smearing (~1.2 GeV here) can account for the data
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Contrary viewpointContrary viewpoint

• Aurenche et al., hep-ph/9811382: 
NLO QCD (sans kT) can fit all the 
data with the sole exception of E706

“It does not appear very instructive 
to hide this problem by introducing 
an extra parameter fitted to the 
data at each energy”

E706

Ouch!

Aurenche et al.
vs.

E706
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ResummationResummation

• Predictive power of Gaussian smearing is small 
– e.g. what happens at LHC?  At forward rapidities?

• The “right way” to do this should be resummation of soft gluons
– as we have seen, this works nicely for W/Z pT

Catani et al. hep-ph/9903436

Threshold resummation: does
not model E706 data very well

Threshold
resummation

Fixed Order

Laenen, Sterman, Vogelsang, 
hep-ph/0002078

Threshold + recoil
resummation:
looks promising
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Is it just the PDF?Is it just the PDF?

• New PDF’s from Walter Giele can describe the observed photon cross 
section at the Tevatron without any kT:

CDF (central) DØ (forward)

New

Blue = Giele/Keller set
Green = MRS99 set
Orange = CTEQ5M and L
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Photons: final remarksPhotons: final remarks
• For many years it was hoped that direct photon 

production could be used to pin down the gluon 
distribution through the dominant process:

• Theorist’s viewpoint (Giele):  
– “... discrepancies between data and theory for a wide range of 

experiments have cast a dark spell on this once promising cross 
section … now drowning in a swamp of non-perturbative fixes”

• Experimenter’s viewpoint:  it is an interesting puzzle
– kT remains a controversial topic
– experiments may not all be consistent
– resummation has proved disappointing so far 

(though the latest results look better)
– new results only increase the mystery

• is it all just the PDF’s?

γ



Boaz Klima (Fermilab) 9th Vietnam School of Physics 49

Heavy Heavy FlavourFlavour
ProductionProduction
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b production at the Tevatronb production at the Tevatron

• b cross section at CDF and at DØ

• Data continue to lie ~ 2 × central band of theory

b

B

central forward

Cross section vs. |y|
pT > 5 GeV/c

pT > 8 GeV/c
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bb correlationsbb correlations
• CDF rapidity correlations DØ angular correlations

• NLO QCD does a good job of predicting the shapes of inclusive 
distributions and correlations, hence it’s unlikely that any exotic 
new production mechanism is responsible for the higher than 
expected cross section
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DØ bDØ b--jet cross section at higher jet cross section at higher ppTT

Differential cross section Integrated pT > pTmin

from varying the scale from 2µO to µO/2,  where µO = (pT
2 + mb

2)1/2

New
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Data Data –– Theory/Theory Theory/Theory 
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bb--jet and photon production comparedjet and photon production compared

DØ b-jets (using highest QCD prediction)
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b production summaryb production summary

• Experimental measurements at Tevatron, HERA and LEP2 (γγ) are all 
consistent and are all several times higher than the QCD prediction
– factor of ~ 2 at low rapidity
– factor of ~ 4 at high rapidity

• Modifications to theory improve but do not fix

• New measurement at higher pT: jets from DØ 
– better agreement above about 50 GeV
– shape of data–theory/theory is similar to photons

• The same story (whatever that is)?



ααss
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• LEP EWWG Summer 1999 (G. Quast at EPS99)
– αs from Γhadrons/Γleptons at mZ: 
– αs from full SM fit:

• Santiago and Ynduráin (hep-ph/9904344)
– extracted αs from F2 measured in DIS (SLAC, BCDMS, E665 and 

HERA)
– αs(MZ) = 0.1163 ± 0.0023

• Kataev, Parente and Sidorov (hep-ph/9905310)
– extracted αs from xF3 measured in CCFR
– αs(MZ) = 0.118 ± 0.006

New New ααss from LEP 1 + SLD datafrom LEP 1 + SLD data

New New ααss from DIS data at NNLOfrom DIS data at NNLO

)(m 0.004  0.123  )(M HZs
0.003
0. ±±=α

0.0030.119 )(MZs ±=α
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ααss from LEP 2from LEP 2

• LEP collaborations have all extracted αs from event shapes, charged 
particle and jet multiplicities at √s = 130 - 196 GeV.

• Non-perturbative effects modelled with MC programs

• Typical uncertainties around ± 0.006
• L3 and OPAL have nice demonstrations of the running of αs

– L3 using radiative events to access lower √s 
– OPAL in combination with data from JADE 



Boaz Klima (Fermilab) 9th Vietnam School of Physics 59

ααss from HERAfrom HERA
• H1 fit the inclusive jet rate d2σ/dETdQ2 and the dijet rate
• ZEUS fit the dijet fraction
• Typical uncertainties around ± 0.005-0.006



Boaz Klima (Fermilab) 9th Vietnam School of Physics 60

Summer 2002 world average Summer 2002 world average ααss

• From S. Bethke (private communication)
average of all 25 

• average based only on complete NNLO 
QCD results (filled circles in plot)

• excellent consistency between low and 
high energy, DIS, pp and e+e–, etc.

• Minimal change from previous world 
average (hep-ex/9812026)
– αs(MZ) = 0.119 ± 0.004 or
– αs(MZ) = 0.120 ± 0.005 excluding 

lattice 

αs(MZ) = 0.118 ± 0.003

αs(MZ) = 0.117 ± 0.002
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Hard Hard 
diffractiondiffraction
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• Here is dijet production at the 
Tevatron — a perturbative
process, which I have told you 
is well modelled by NLO QCD

• Except for one detail: in a 
substantial fraction (a few 
%?) of these events one of the 
protons seems not to break up

• Similar observations at HERA

Dijets in Roman Pot Data

Roman Pots at CDF�

DIPOLE MAGNETS

ROMAN POTS
    at 57 m

p- CDF

 Scintillator fiber xy-tracker
  270    pitch, 2 m lever armx=0.95

x=1

µ

    Acceptance:  0 < |t| < 2,   0.05<   < 0.1ξ

Dijet Event with Roman Pot Track�

 Run 75405 Evt 252824   NA.DIFFRACT.DATA]B75405AX.RAW  10JAN96 17:47:43 12-JAN-96

 Run 75405 Evt 252824   NA.DIFFRACT.DATA]B75405AX.RAW  10JAN96 17:47:43 12-JAN-96

PHI:

ETA:

  133.

  0.48

  9.1

Eta - Phi LEGO: Raw Data,Transverse  Energy.                
Tower energy threshold 0.2 GeV.                             
 EM                                                         (  +HA)  Maximum energy   9.1 GeV.                          

CLF:  ETEM/ETTOT/ORG/NTW/PT             
       3.5/  5.5/CLF/  1                
      17.5/ 22.0/CLF/  4                
       5.5/ 20.5/CLF/  4                

PHI:

ETA:

  133.

  0.48

Something we have failed to describeSomething we have failed to describe

CDF dijet event with Roman Pot track
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Rapidity GapsRapidity Gaps

• Presumed mechanism for such processes is the exchange of a colour-
singlet object (a “Pomeron”)

• Another consequence of colour-singlet exchange is rapidity gaps 
(regions of phase space with no particle production)

(gap)

η

φ
p

hard single diffraction

(gap)

η

φ
p

hard double pomeron

(gap)
p

η

φ

hard color singlet

(gap)

p

p

p

p

p

p

pomeron
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Rapidity Gaps at the TevatronRapidity Gaps at the Tevatron
 EM E          

 ICD/MG E      

 FH E          

 CH E          

Typical event

Hard single diffraction

Hard double pomeron

Hard color singlet

Gap events also
seen at HERA
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What does this all mean? What does this all mean? 

• Attempts to understand in terms of a partonic structure of the 
pomeron
– look at jet ET spectra diffractive vs. non-diffractive
– look at diffractive fraction at 630 GeV vs. 1800 GeV 
– diffractive W production: quarks in initial state

• Hard to get any kind of consistent picture

• In my view, we need
– better data (CDF and DØ both plan upgraded Roman Pot systems)
– a different worldview 

• the picture of an exchanged bound state may not be correct

• It is surely worth pursuing this physics: by beginning with hard, jet 
production processes which we have some hope of understanding, we 
can learn about the mechanisms of elastic scattering and the total 
cross section
– for example, view diffractive W production not as an unusual kind 

of diffraction, but as an unusual kind of W production 
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Some final Some final 
remarks on QCDremarks on QCD
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Things we can look forward toThings we can look forward to

• More data — the next decade belongs to the hadron colliders

• Improved calculations

• PDF’s with uncertainties, or at least a technique for the propagation of 
PDF uncertainties as implemented by Giele, Keller, and Kosower
– so we won’t get excited unnecessarily by things like the high ET jet 

“excess”
– but imposes significant work on the experiments

• understand and publish all the errors and their correlations

• Better jet algorithms
– CDF and DØ accord for Run II
– kT will be used from the start
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Future Jet AlgorithmsFuture Jet Algorithms

• Fermilab Run II QCD workshop 1999: 
CDF-DØ-theory

• Experimental desires
– sensitivity to noise, pileup, negative 

energies

• Theoretical desires 
– “infrared safety is not a joke!”
– avoid ad hoc parameters like Rsep

• Can the cone algorithm be made 
acceptable?
– e.g. by modification of seed choices
– or with a seedless algorithm? 

• Many variations of kT exist — choose one 
and fully define it

“Midpoint cone”

Additional 
seed
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We’ve come a long wayWe’ve come a long way

• “I can remember when all it took to do QCD was the Born term plus 
bullshit”
– sign in Jeff Owens’ office

• “Twenty or even fifteen years ago, this activity was called ‘testing 
QCD.’  Such is the success of the theory that we now speak instead of 
‘calculating QCD backgrounds’ for the investigation of more 
speculative phenomena...”
– Frank Wilczek, Physics Today, August 2000
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ConclusionsConclusions

We are no longer testing QCD — nowadays calculating within QCD

• Our calculational tools are working well, especially at moderate to high 
scales
– the state of the art is NNLO calculations, NLL resummations

• Some interesting things (challenges!) are happening as we approach 
scales of order 5 GeV
– problems calculating b cross sections
– problems with low pT direct photon production (kT?)
– indications of few GeV jet energy effects?

• Other challenges for the future
– identification of appropriate jet algorithms
– underlying event in hadron-hadron collisions
– understanding parton distribution uncertainties
– consistent understanding of hard diffractive processes


